
Why You Should
Migrate from SQL to
NoSQL for Time Series
Data

An overview of SQL vs. NoSQL
databases

Most developers and engineers working with time series data today do so
using noSQL databases. Still, there's a signi�cant number using relational
database management systems (RDBMS) for time series data. This web
page explains the di�erences between SQL and noSQL databases in
general as well as the speci�c di�erences for time series use cases.

One of the most important di�erences between SQL and noSQL is the schema, or lack
thereof. The relational model means you can't create a SQL database without a prede�ned
schema, where the data is normalized into tables with primary and foreign keys designated,
and all the relationships between columns, rows, indices, and tables are de�ned.

There are two disadvantages to this approach:

Get In�uxDB

Looking to build real-time
applications in less time with less
code? In�uxDB can help!

1

(1) New Messages! https://www.influxdata.com/from-sql-to-nosql/

1 von 6 28.06.2022, 12:16

https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/_resources/case-studies/
https://www.influxdata.com/_resources/case-studies/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/get-influxdb/
https://www.influxdata.com/get-influxdb/
https://www.influxdata.com/get-influxdb/

• You must de�ne your schema ahead of time before you can begin creating tables or
entering data.

• You cannot change your mind about your schema later.

Both can cause frustration, especially point 2: any kind of change in the structure of your
database will be both di�cult and disruptive.

NoSQL databases don't have this problem. The majority of noSQL databases have dynamic
schemas, so the schema doesn't need to be de�ned up-front. As such, it's possible to
create documents without a prede�ned structure, and to create a di�erent structure for
each document.

Another bene�t of noSQL databases is the increased potential for scalability. SQL
databases use table structures while noSQL databases typically use key-value stores. This
means that SQL-based databases scale vertically (scaling them up requires a bee�er
server, more processing power, etc.) while noSQL databases tend to scale horizontally
(scaling up involves some combination of sharding and adding more servers). Horizontally-
scaled systems have the potential to become much more powerful than vertically-scaled
ones overall: you'll hit an upper bound on how much RAM/CPU/GPU/etc. you can add to
one server, but additional servers can tile out much farther.

All that being said, noSQL data stores have some downsides as a result of their distributive
nature. NoSQL databases follow the CAP Theorem which states that it is impossible for a
distributed database to simultaneously provide consistency, availability, and partition
tolerance. However, In�uxDB is an exception. In�uxDB is a hybrid non-strict CP/AP.

Finally, the most signi�cant downside of noSQL data stores comes from their lack of history
compared with SQL ones.

Structured Query Language has been around for about 40 years now. As a result, it's the
basis for a lot of databases, both relational (ex. MySQL, SQL Server) and non-relational (ex.
Postgres). Because all these di�erent databases — each with many thousands of users —
use SQL, it's extremely stable and well-supported. By contrast, it can be di�cult to �nd
expert developers for many noSQL databases, and the selection of third-party consultants
to help with complex implementations is more limited.

Because of this, it's critical for whatever noSQL database you wind up using to have
excellent community support, because that's what you will end up relying on in the absence
of many consultants.

(1) New Messages! https://www.influxdata.com/from-sql-to-nosql/

2 von 6 28.06.2022, 12:16

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://www.influxdata.com/the-best-way-to-store-collect-analyze-time-series-data/
https://www.influxdata.com/the-best-way-to-store-collect-analyze-time-series-data/

Using SQL vs. NoSQL for time
series use cases

Gaining high performance for time series from a SQL database requires signi�cant
customization and con�guration. Without that, unless you're working with a very small
dataset, a SQL-based database will simply not work properly. As an example, un-con�gured
PostgreSQL's ingest rate will dip signi�cantly at 100M+ total dataset rows, and become
near-unusable at 400M+ rows.

Con�guring a SQL database — or, for that matter, any non-time-series-optimized database
(i.e. MongoDB, Cassandra, etc.) — for time series data is not trivial. On the other hand, as a
purpose-built time series database, In�uxDB comes equipped to work with time series data
right out of the metaphorical box.

Time series data is unique. Time series data is almost always monitoring data and is usually
collected to determine if a system, host, environment, patient, etc. is healthy. In order to
optimize for time series use cases, several assumptions and tradeo�s were made during
the design of In�uxDB. For example, data is added in time-ascending order. Additionally,
when deletes occur, it’s typically against a large range of old data. These assumptions
enable In�uxDB to have incredibly high query and write performance — and led to several
design decisions that promote In�uxDB’s high performance. In�uxDB anticipates and
supports high cardinality use cases by storing the index on disk. Furthermore, it is written in
Go for fast and concurrent data fetching with an easy binary deploy. Finally, it is worth
noting that In�uxDB is an exception in the NoSQL world because it is a hybrid non-strict
CA/AP database — it is consistent, available, and partition-tolerant.

SQL databases are typically focused on CRUD — creating, reading, updating, and deleting
data, all in equal measure. In addition, they're typically designed with the ACID principles
(Atomicity, Consistency, Isolation, Durability) in mind. NoSQL, on the other hand, tends to be
looser with these principles: for example, In�uxDB is focused primarily on creating and
reading data, and much less on updates and deletes to speci�c rows.

Each database type comes with tradeo�s that are optimized for their use cases. Since time

(1) New Messages! https://www.influxdata.com/from-sql-to-nosql/

3 von 6 28.06.2022, 12:16

https://www.influxdata.com/resources/lets-compare-a-benchmark-review-of-influxdb-and-mongodb-3-6-2/
https://www.influxdata.com/resources/lets-compare-a-benchmark-review-of-influxdb-and-mongodb-3-6-2/
https://www.influxdata.com/resources/benchmarking-influxdb-vs-cassandra-for-time-series-data-metrics-and-management/
https://www.influxdata.com/resources/benchmarking-influxdb-vs-cassandra-for-time-series-data-metrics-and-management/
https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/products/influxdb/
https://docs.influxdata.com/influxdb/v2.0/reference/key-concepts/design-principles/
https://docs.influxdata.com/influxdb/v2.0/reference/key-concepts/design-principles/
http://www.refactorium.com/distributed_systems/InfluxDB-and-Jepsen-Chapter-II-Where-is-influxdb-on-the-cap-scale/
http://www.refactorium.com/distributed_systems/InfluxDB-and-Jepsen-Chapter-II-Where-is-influxdb-on-the-cap-scale/
http://www.refactorium.com/distributed_systems/InfluxDB-and-Jepsen-Chapter-II-Where-is-influxdb-on-the-cap-scale/
http://www.refactorium.com/distributed_systems/InfluxDB-and-Jepsen-Chapter-II-Where-is-influxdb-on-the-cap-scale/

series data comes in time order and is typically collected in real-time, time series databases
are immutable and append-only to accomodate for extremely high volumes of data. The
append-only property of time series databases distinguishes time series databases from
relational databases, which are optimized for transactions but only accommodate lower
ingest volumes. In general, depending on their particular use case, noSQL databases will
trade o� the ACID principles for BASE model (whose principles are Basic Availability, Soft
State and Eventual Consistency). For example, one individual point in a time series is fairly
useless in isolation, and the important thing is the trend in aggregate.

One of the barriers to choosing a noSQL database is the di�culty of learning a non-SQL
query language and performing complex data transformations. Fortunately, In�uxDB has
Flux lang — an easy-to-learn, standalone data scripting and query language that increases
productivity and code reuse. Users can easily perform data transformation and apply
complicated math with intuitive syntax.

For example, to query our data, “my_data” , from our bucket, “my_bucket” , while
specifying a measurement, “my_measurement” for the last 7 days, we would use the
following Flux query:

Flux enables users to interact with time series in a table format, giving In�uxDB a relational
feel. With Flux, users can perform cross-measurement joins, pivots, maps, and math across
measurements. In�uxDB Templates and user de�ned Flux packages make the barrier to
Flux adoption extremely low. In�uxDB Templates prepackage con�gurations that contain
everything from Flux queries, to dashboards and Telegraf con�gurations, to noti�cations
and alerts — thereby enabling users to use Flux before they even know how to write it.
User de�ned Flux packages allow users to write and share custom-functions that wrap up
complicated Flux scripts. Flux provides a powerful way for working with data. Here’s where
you can learn more about why In�uxData is building Flux.

Even though data structures vary between noSQL and SQL databases, almost all of the
above query should feel intuitive to the SQL developer, except for maybe the bucket. A
bucket is where time series data is stored. All buckets have retention policies. A retention
policy describes how long In�uxDB keeps data. In�uxDB compares your local server’s
timestamp to the timestamps on your data and deletes data that is older. Automatically

from(bucket: "my-bucket")

|> range(start: v.timeRangeStart, stop: v.timeRangeStop)

|> filter(fn: (r) => r["_measurement"] == "my_measurement")

|> filter(fn: (r) => r["_field"] == "my_data")

(1) New Messages! https://www.influxdata.com/from-sql-to-nosql/

4 von 6 28.06.2022, 12:16

https://www.influxdata.com/time-series-database/
https://www.influxdata.com/time-series-database/
https://www.influxdata.com/products/flux/
https://www.influxdata.com/products/flux/
https://www.influxdata.com/blog/learning-flux-fluxlang-is-about-as-difficult-as-learning-an-api/
https://www.influxdata.com/blog/learning-flux-fluxlang-is-about-as-difficult-as-learning-an-api/
https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/join/
https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/join/
https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/pivot/
https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/pivot/
https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/map/
https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/map/
https://www.influxdata.com/products/influxdb-templates/
https://www.influxdata.com/products/influxdb-templates/
https://docs.influxdata.com/influxdb/latest/query-data/flux/custom-functions/
https://docs.influxdata.com/influxdb/latest/query-data/flux/custom-functions/
https://www.influxdata.com/blog/why-were-building-flux-a-new-data-scripting-and-query-language/
https://www.influxdata.com/blog/why-were-building-flux-a-new-data-scripting-and-query-language/
https://docs.influxdata.com/influxdb/v2.0/process-data/common-tasks/downsample-data/
https://docs.influxdata.com/influxdb/v2.0/process-data/common-tasks/downsample-data/
https://docs.influxdata.com/influxdb/v2.0/process-data/common-tasks/downsample-data/
https://docs.influxdata.com/influxdb/v2.0/process-data/common-tasks/downsample-data/

expiring and downsampling old data is critical for time series use cases because of the
high-volume nature of time series problems. However, creating and enabling these
recurring tasks are challenging in a SQL environment.

Speci�cally, SQL developers would need to write code to shard the data across the cluster,
aggregate and downsampling functions, data eviction and lifecycle management, and
summarization. They’d also have to create an API to write and query their new service.
Furthermore, developers using Cassandra or HBase will need to write tools for data
collection. They’ll need to introduce a real-time processing system and write code for
monitoring and alerting. Finally, they’ll need to write a visualization engine to display the
time series data to the user. All of these functionalities are already provided with In�uxDB.

548 Market St, PMB 77953
San Francisco, California 94104

Contact Us

   

Products

In�uxDB
Telegraf
Pricing
Support
Use Cases

Resources

In�uxDB U
Blog
Community
Customers
Swag
Events

(1) New Messages! https://www.influxdata.com/from-sql-to-nosql/

5 von 6 28.06.2022, 12:16

https://www.influxdata.com/how-to-visualize-time-series-data/
https://www.influxdata.com/how-to-visualize-time-series-data/
https://www.influxdata.com/general-inquiries/
https://www.influxdata.com/general-inquiries/
https://twitter.com/influxdb
https://twitter.com/influxdb
https://twitter.com/influxdb
https://twitter.com/influxdb
https://twitter.com/influxdb
https://twitter.com/influxdb
https://twitter.com/influxdb
https://www.linkedin.com/company/influxdb/
https://www.linkedin.com/company/influxdb/
https://www.linkedin.com/company/influxdb/
https://www.linkedin.com/company/influxdb/
https://www.linkedin.com/company/influxdb/
https://www.linkedin.com/company/influxdb/
https://www.linkedin.com/company/influxdb/
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://www.influxdata.com/slack
https://www.influxdata.com/slack
https://www.influxdata.com/slack
https://www.influxdata.com/slack
https://www.influxdata.com/slack
https://www.influxdata.com/slack
https://www.influxdata.com/slack
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/influxdb-pricing/
https://www.influxdata.com/influxdb-pricing/
https://support.influxdata.com/s/
https://support.influxdata.com/s/
https://www.influxdata.com/solutions/
https://www.influxdata.com/solutions/
https://influxdbu.com/
https://influxdbu.com/
https://www.influxdata.com/blog/
https://www.influxdata.com/blog/
https://community.influxdata.com/
https://community.influxdata.com/
https://www.influxdata.com/customers/
https://www.influxdata.com/customers/
https://store-influxdb.myshopify.com/
https://store-influxdb.myshopify.com/
https://www.influxdata.com/events/
https://www.influxdata.com/events/

In�uxData

About
Careers
Partners
Legal
Newsroom
Contact Sales

Sign Up for the In�uxData Newsletter

*Email

I have read the privacy policy.

Submit

© 2022 In�uxData Inc. All Rights Reserved. Sitemap

(1) New Messages! https://www.influxdata.com/from-sql-to-nosql/

6 von 6 28.06.2022, 12:16

https://www.influxdata.com/about/
https://www.influxdata.com/about/
https://www.influxdata.com/careers/
https://www.influxdata.com/careers/
https://www.influxdata.com/partners/
https://www.influxdata.com/partners/
https://www.influxdata.com/legal/
https://www.influxdata.com/legal/
https://www.influxdata.com/newsroom/
https://www.influxdata.com/newsroom/
https://www.influxdata.com/contact-sales/
https://www.influxdata.com/contact-sales/
https://www.influxdata.com/legal/privacy-policy/
https://www.influxdata.com/legal/privacy-policy/
https://www.influxdata.com/sitemap-pages/
https://www.influxdata.com/sitemap-pages/

