
91© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_6

CHAPTER 6

Introduction to
Jupyter Notebook
In the previous chapter, we learned about Python. We also had a glance

at how we can use Python in its REPL shell to write our code. This Python

shell, however, is not the most recommended tool to use when it comes to

massive machine learning programming. This is why we have developed

applications like Jupyter Notebook, which aid in such programming

requirements.

Jupyter Notebook is the brainchild of Project Jupyter, which is a non-

profit organization founded by Fernando Pérez. It was created with the

objective of developing open source software and providing services

that allow multiple languages to interact with one another for effective

computing.

Jupyter Notebook is an open source web-based application that

allows users to create, edit, run, and share their code with ease. This

application gets its name from the main languages that it supports: Julia,

Python, and R.

To fully appreciate Jupyter Notebook, let us first take a look at what a

“notebook” is with regard to programming.

https://doi.org/10.1007/978-1-4842-5967-2_6#DOI

92

 Understanding the Notebook Interface
A computational notebook or a notebook interface, or quite simply

a notebook, is used for literate programming, where we add a

comprehensive explanation along with our program. It is a virtual

notebook; i.e., it has a notebook-style GUI that provides a word processing

software’s functionality, along with a kernel and a shell.

 A Brief History of the Notebook
The notebook interface was first introduced around 1988, when Wolfram

Mathematica 1.0 was released on the Macintosh. This system allowed

users to create and edit notebook interfaces through its front-end GUI.

Then came Maple, released for Macintosh with version 4.3. It provided

a GUI in the style of a notebook, which became a highly acclaimed

interface for programming.

As the notebook began to grow in demand, people soon began to adapt

notebook-styled kernels and backends for other programming languages,

such as Python, MATLAB, SQL, and so on. Thus, the computational

notebook became quite popular among coders.

 Features of a Notebook
The generic features of a notebook are as follows:

 1. It allows us to add cells of code, which make

debugging and programming easier.

 2. It can be used to display visual representations of

data.

 3. It allows us to add text in between each cell, which

makes it easier for the coder to explain the function

of each line of code.

Chapter 6 IntroduCtIon to Jupyter notebook

93

 4. Items within a notebook can easily be rearranged for

narrative purposes and better readability.

 5. It can be used as a tool for live presentations.

 6. It can be used to create interactive reports on

collected data and analytical results.

 Commonly Used Notebooks
Some commonly used open-source notebooks include the following:

 1. Jupyter Notebook

 2. IPython

 3. Apache Spark Notebook

 4. Apache Zeppelin

 5. JupyterLab

 6. R Markdown

 An Overview of Jupyter Notebook
As mentioned before, Jupyter Notebook is a web-based application

developed by Project Jupyter. Its aim is to enable users to, as stated on

the official website, “create and share documents that contain live code,

equations, visualizations and narrative text.”

Jupyter Notebook was developed in 2014 as a spin-off of the original

IPython, which is a command shell used to carry out interactive coding.

With the release of Jupyter Notebook, IPython found itself competing with

it, to an extent. It still remained as a kernel for Jupyter and as a shell for

Python, but everything else came under Jupyter Notebook.

Chapter 6 IntroduCtIon to Jupyter notebook

94

Fun Fact Jupyter notebook was originally known as Ipython
notebook, since it was conceived from Ipython.

The official website of Project Jupyter states that Jupyter Notebook

can support over forty programming languages. Each project is stored as a

notebook consisting of several cells of code, graphs, texts, and equations,

which can be altered easily. These notebooks can also be conveniently

distributed to others.

 Features of Jupyter Notebook
Apart from the generic characteristics of a computational notebook,

Jupyter Notebook has the following key features:

 1. Each Jupyter Notebook is a JSON document. JSON is a

language- independent data format that is derived from

JavaScript. It uses human- readable text to transmit data

containing arrays or attribute–value pairs.

 2. Each Jupyter Notebook is usually saved with a

.ipynb extension.

 3. Jupyter Notebook is similar in style to other

interfaces that originated years before it, including

Maple and Mathematica (from the 1980s) and

SageMath (from the 2000s).

 4. Jupyter Notebook was released under the modified

BSD license, which provides users with minimum

limitations in the usage and distribution of the

software.

 5. Jupyter Notebooks can easily be shared with others

through email, Dropbox, GitHub, and the Jupyter

Notebook Viewer.

Chapter 6 IntroduCtIon to Jupyter notebook

95

 6. Jupyter Notebook is, at present, completely free to

use, and it is intended to remain free for anyone to

use at any time.

 Advantages of Jupyter Notebook
Jupyter Notebook has, since its release, proved to be a powerful tool for

programming, especially for high-level programmers. It has a smooth

and easy-to-use interface, which is great for those who are new to

programming. It also allows users to create new files and folders directly

on their system for easy storage of their code.

Let’s take a better look at what makes Jupyter Notebook stand out as a

programming application. It has the following features:

• It makes the overall programming experience better.

• It is an interactive application.

• It is open source; i.e., it is free to download, install, and use.

• It allows users to add notes, comments, and headings

in between lines of code in a notebook in the markdown

format, which is especially useful when sharing code

with others.

• It is convenient to edit code as each line of code can be

added to a separate cell, and this cell can be deleted,

modified, replaced, and so on.

• It is very easy to share and distribute code with others.

• Each notebook can be converted into different file

formats, like HTML, markdown, PDF, and so on.

Jupyter Notebook is in great demand now, but it did arrive pretty late

into the programming world. Before its conception, there were other

applications such as text editors and IDEs that coders used, and that are

still in use even today.

Chapter 6 IntroduCtIon to Jupyter notebook

96

 Text Editors and IDEs
Earlier, programmers would type all of their code into a text editor like

Windows Notepad. These text editors allowed them to type in their code

and then install extra plugins that added bonus features. After that, they

had to transfer all the code to the command prompt to run it.

Later, IDEs were created to give programmers an environment that

provided them with all the features they would need to develop their code.

They would not need to write and run their code in separate applications,

or install new plugins each time. They could easily create, edit, debug, and

run their code in a single workspace.

Let us first take a look at the classic text editors to see how they were

used to program.

 Getting Acquainted with Text Editors
Over the years, programmers have used all kinds of tools and

environments for their code, including the very basic text editor.

The text editor is a computer program that is used, as its name

suggests, to edit plain text.

They are usually provided by default with operating systems. They

allow users to edit files like documentations and source code. Some

examples of text editors are the TextEdit application on Mac OS, Vim on

Linux, and the widely known Notepad on Windows.

Text editors are great for developers who are new to the field and

who are still familiarizing themselves with coding. They are also readily

available on the system. This is why most people prefer to start out with

text editors.

However, with the increasing complexity of advanced programs, and

especially with the introduction of artificial intelligence and machine

learning, programmers felt the need to create workspaces that would make

the process much easier. Hence, they came up with something called an IDE.

Chapter 6 IntroduCtIon to Jupyter notebook

97

 Getting Acquainted with the IDE
An IDE, or integrated development environment, allows us to write, edit,

test, and debug our code by providing us with the necessary tools and

services.

For example, with the help of an IDE, we can manage resources, debug

errors, and complete our code very easily. Most IDEs are limited to a

single programming language, but some allow users to work with multiple

languages.

 Features of an IDE
Most IDEs come with the following features:

 1. Text editor: It allows users to write and edit code,

and also provides syntax highlighting according to

the language being used.

 2. Auto-completion of code: It identifies the next

possible input provided by the coder, and inserts

that component accordingly. This reduces the

chance of errors, and also significantly decreases the

amount of time spent programming.

 3. Debugging tools: They seek out any errors in the

code and proceed to rectify them, thus saving time

and making the programmer’s work easier.

 4. Compilers: They are used to translate the code

into a format that the machine can understand and

process.

Chapter 6 IntroduCtIon to Jupyter notebook

98

 Benefits of an IDE
Programming with an IDE is considered advantageous for the following

reasons:

 1. It is a single environment in which the programmer

can access all the required tools and utilities.

 2. It can auto-complete code and debug errors on

its own, reducing the effort and time spent by the

programmer.

 3. It manages the syntax on its own as well, which is

especially useful when it comes to indentations.

 4. The code can be reverted, if needed, without any

major inconvenience.

 5. Project collaboration becomes easier.

 Some Popular IDEs
Three of the most commonly used IDEs are the following:

• IDLE: IDLE, or the Integrated Development and

Learning Environment, is automatically installed along

with Python. It is lightweight and simple, making it easy

to learn. It provides tools that are similar to those in

text editors. It allows cross-platform usage and multi-

window text editing. It is a good start for those who are

new to IDEs.

• Spyder: Spyder, or the Scientific Python Development

Environment, is an open source IDE. It is great for

anyone who is a beginner to IDEs. It has the features

of a text editor, but with a GUI, making it easy for

Chapter 6 IntroduCtIon to Jupyter notebook

99

people to transition from the simple programming

application to this more advanced one. It even allows

the installation of extra plugins for added benefit. It

is also visually similar to RStudio, allowing people to

switch easily from R to Python.

• Pycharm: Pycharm is a professional Python IDE. It

was made by JetBrain. It provides code editors, error

highlighting, and a debugger, all with a GUI. It can also

be personalized by allowing the user to change its color,

theme, and so on. It integrates Numpy and Matplotlib,

making it easy to work with graphs and array viewers.

Note although Ides have always been used to describe a working
environment that allows a programmer to write and edit code, debug
errors, and so on, the main definition of an Ide is slowly being altered
as a result of the introduction of other tools such as Jupyter notebook
that also allow users to easily develop code.

 IDE vs. Text Editor
Text editors have always been very simple to use. Even beginners to the

programming world could easily use them to code, without having to

worry about learning to use a new application. They required less effort in

terms of understanding the programming interface.

IDEs, on the other hand, require a little bit of familiarization before

a programmer can feel comfortable enough to make full use of its

features. However, they have extra capabilities and tools that simplify the

programming experience.

Chapter 6 IntroduCtIon to Jupyter notebook

100

The conclusion: It all depends on our need and preference. If we don’t

want to spend time learning how to use an application, and would rather

make use of a simple interface for our code, we can use a text editor. And, if

we want to invest a little time in learning how to use an application, which

will then help us later with the rest of our programming requirements, we

can use an IDE.

Now that we know what text editors and IDEs are, we can see how the

notebook interface, and specifically Jupyter Notebook, is more beneficial

to programmers compared to similar applications.

 Jupyter Notebook vs. Other Programming
Applications
Why would we want to choose Jupyter Notebook over other programming

applications? Well, let’s have a look at the following differences between

Jupyter Notebook and other such applications:

• Tools: Jupyter Notebook provides users with tools and

utilities that make the programming experience much

faster and easier. Compared to other IDEs, Jupyter

Notebook has more services available.

• Graphical User Interface: The GUI of Jupyter

Notebook varies because it is meant to look like a

notebook and not like a general IDE. This makes it

easier on the eye and quite simple to understand.

• Usability: It is easier to use Jupyter Notebook

compared to other IDEs because of its easily accessible

features.

Chapter 6 IntroduCtIon to Jupyter notebook

101

• Learning: Compared to other IDEs, Jupyter Notebook

may take a little time to grasp, just because of how

different it is from what we are used to. However, once

we do learn it, it becomes extremely convenient to use.

• Web-based: Jupyter Notebook runs on the browser,

unlike other IDEs, which work on the local system.

• Visualization: Although some IDEs provide users

with a great platform for visualization, other IDEs

don’t. Jupyter Notebook does, though, thus making it

easier for a programmer to use plots and other such

visualization techniques.

In this way, Jupyter Notebook outdoes its competitors in the

programming world.

Jupyter Notebook sounds like a blast, doesn’t it? Well, it is! Once we

get the hang of it, we can thoroughly enjoy programming with it. Let’s now

learn how to set up our Jupyter Notebook environment on our machine.

 Installing Jupyter Notebook
As mentioned in the previous chapter, one advantage of using Anaconda

is that the installation of Jupyter Notebook becomes quite an easy task to

achieve. There is no hassle of navigating through various applications just

to download it. All we need to do is the following:

 1. Open the Anaconda Navigator.

 2. Select the working environment, as shown in

Figure 6-1.

Chapter 6 IntroduCtIon to Jupyter notebook

102

 3. Click on the option to install Jupyter Notebook.

Et voila! Jupyter Notebook is now ready for use. In the next few

sections, we will explore its interface so as to get ourselves comfortable

with the layout and working of the application.

Note When installing, we must make sure that we install Jupyter
notebook and not JupyterLab. there’s a difference!

 Launching Jupyter Notebook
The first thing we will need to do is select our working environment. Here,

I have chosen myenv.

Figure 6-1. Installing Jupyter Notebook

Chapter 6 IntroduCtIon to Jupyter notebook

103

Next, we need to open up the Jupyter Notebook window. We can do

this by opening the Anaconda application and then clicking on “Launch”

under the Jupyter Notebook icon.

Since Jupyter Notebook is a web-based application, it opens in our

browser. The first window that opens is a dashboard, which gives us a

glimpse of our work so far, including files, folders, and notebooks. It will

look like Figure 6-2.

The URL bar contains a link that represents the notebook server, and

indicates that it is running from our local machine. The link will appear

like this this - http://localhost:8888/tree.

The rest of the dashboard is quite self-explanatory, but we will run

through it anyway. Here’s a breakdown of some of the basic but most

important features of the Jupyter Notebook interface, as shown in Figure 6-3:

Figure 6-2. The Jupyter Notebook Dashboard

Figure 6-3. Some important features of the Jupyter Notebook
dashboard

Chapter 6 IntroduCtIon to Jupyter notebook

104

 1. The Logout button allows us to log out of our Jupyter

Notebook session.

 2. The Upload button allows us to upload a readily

available Jupyter Notebook that we can use.

 3. The New button allows us to create a new Python

notebook, file, folder, or terminal.

 4. The File tab shows us an ordered list of all our files

and folders.

 5. The Running tab shows us any terminals or

notebooks that are open and running.

 6. The Name button allows us to toggle the way our list

of files and folders is displayed; i.e., in ascending or

descending alphabetical order.

 7. We can even select the “Last Modified” option to

display our items based on the last time that they

were modified.

 8. The little check-box option with a “0” beside it

allows us to select all folders, notebooks, files, and

items that are open and running. We can even select

all of the items at once.

 9. In our list of items, the ones with a folder icon next

to them represent the folders that we have on our

computer, as shown in Figure 6-4.

Chapter 6 IntroduCtIon to Jupyter notebook

105

 10. Once we create Jupyter notebooks and text files,

they will begin to appear on the dashboard. The

items with a page icon next to them represent the

documents that have a .txt extension, and the ones

with a notebook icon next to them represent the

Jupyter notebooks, which have a .ipynb extension,

as shown in Figure 6-5.

Now that we are aware of the general features of the Jupyter Notebook

interface, let’s see what happens when we select an item from our list by

clicking on the check box next to it. When we select an item, we will have a

number of available options, as shown in Figure 6-6:

Figure 6-4. List of folders

Figure 6-6. Controls available for each item

Figure 6-5. A notebook and a file

Chapter 6 IntroduCtIon to Jupyter notebook

106

 1. We can Rename the item.

 2. We can Duplicate the item to make another copy of it.

 3. We can Move the item to another location.

 4. We can Download the item.

 5. We can View the item, which will open in a new tab

in our browser window.

 6. We can Edit the item.

 7. We can Delete the item by clicking on the red trash

can symbol.

 8. We can Shutdown a notebook that is open and

running, as shown in Figure 6-7.

 9. We can even select several items at the same time

and perform any available action on them.

Let us now create a brand new Jupyter notebook and explore all the

features within it.

Figure 6-7. Option to shut a notebook down

Chapter 6 IntroduCtIon to Jupyter notebook

107

 Inside a Jupyter Notebook
To create a new Jupyter Notebook, all we have to do is click on ‘New’ on

the dashboard, and then select the kernel of our choice. Here, we select the

‘Python 3’ kernel, as shown in Figure 6-8.

We will get a new tab with a notebook user interface (UI) that looks like

Figure 6-9.

Figure 6-9. A new notebook

Figure 6-8. Opening a new Jupyter Notebook with a Python 3 Kernel

Chapter 6 IntroduCtIon to Jupyter notebook

108

The notebook UI is quite self-explanatory as well. However, just like

before, we will have a quick run-through of all its main features.

 1. At the top, the title of the notebook is displayed. It

starts out as “Untitled,” and when we click on it, we

can change the name based on our preference, as

shown in Figure 6-10.

 2. Next to the title of our notebook, we will see “Last

Checkpoint,” with a timing. That indicates the last

time the notebook was auto-saved.

 3. Below this is the menu bar, containing a series of

drop-down menus, as shown in Figure 6-11.

 4. After this comes the tool bar, containing tools that

we will need as we use Jupyter Notebook, as shown

in Figure 6-12. We can hover over each tool icon to

know what it does.

Figure 6-10. Renaming a notebook

Figure 6-11. The Menu Bar

Chapter 6 IntroduCtIon to Jupyter notebook

109

 5. Finally, we have the area where we type in all of our

input and view our output, as shown in Figure 6-13.

You might have noticed that the menu bar contains the Cell menu

and the Kernel menu. These are two terms that are very important in the

Jupyter Notebook environment.

 Cell
A cell is nothing but the box in which we type all our input, which can either

be code, regular text, or headings.

When we first open our Jupyter notebook, we will see that the first

cell is a “Code” cell. This cell allows us to enter the commands, functions,

variables, constants, and all other inputs that are a part of our program.

When we execute this cell, the output, if any, is displayed beneath it.

Let’s try typing the following in the “Code” cell:

print("Hello World!")

Figure 6-12. The Tool Bar

Figure 6-13. This is where the different kinds of cells appear,
allowing us to enter our input

Chapter 6 IntroduCtIon to Jupyter notebook

110

Now, we can execute the cell by clicking on the Run button from
the tool bar. We can also just use the keyboard shortcut, which is
Shift+Return. We will find that the code line is executed and the output is
printed out right below the cell, as shown in Figure 6-14.

The second type of cell is a “Markdown” cell. Markdown is a formatting
syntax that is used to style plain text. Thus, this cell is used to enter any text
that is not a part of the code. This could be explanations or notes that are
needed in between the code, either to make it easier for us as we program,
or to make it more comprehensive for someone else who is going through
it. Once we type in all the necessary text and execute the cell, it becomes a
regular text box that is visible in our program.

Let’s try this text in the “Markdown” cell:

Hello World!

Our Markdown cell will display an output as shown in Figure 6-15.

The third type of cell is the “Heading” cell. This cell is used to add
headings throughout our program. This allows us to make our entire
program look much more organized, especially if we have more than one

program running within the same notebook.

Figure 6-15. Entering regular text

Figure 6-14. Executing a code cell

Chapter 6 IntroduCtIon to Jupyter notebook

111

Let’s try typing this in the “Heading” cell:

My Program

The heading will appear as shown in Figure 6-16.

We can also just open a regular Markdown cell and type the following in -

My Program

The ‘#’ symbol is used to convert the sentence into a heading. The

number of times we use the symbol indicates the level of the heading. For

example, a single hash is used to obtain a level one heading.

We can change the type of cell that we want to use by selecting it from

the list of options in the Tool Bar.

 Kernel
A kernel runs the code that is contained within the Jupyter notebook.

A kernel is not limited to a single cell, but rather to the entire notebook.

When we execute code in a selected cell, the code runs within the kernel

and sends any output back to the cell to be displayed.

There are kernels for more than a hundred languages, including

Python, C, R, and Java. When we create a new notebook from the Jupyter

Notebook dashboard, we are basically selecting our kernel by choosing the

Python version that we desire to use. In this case, when we select “Python 3,”

we are telling our system to open a Python 3 kernel.

Figure 6-16. Entering a heading

Chapter 6 IntroduCtIon to Jupyter notebook

112

Now that we have some idea of what a cell and a kernel are, let’s come

back to the menu bar and explore what the Cell and Kernel drop-down

menus allow us to do.

 The Cell Drop-Down Menu
Figure 6-17 shows the different options available within the Cell

drop-down menu.

 1. Run Cells: This executes the code that is in the

selected cell or cells, and gives an output, if any.

 2. Run Cells and Select Below: This executes the

selected cells and then selects the cell below them.

 3. Run Cells and Insert Below: This executes the

selected cells and then inserts an extra cell just

below them.

 4. Run All: This executes all the cells in the notebook.

 5. Run All Above: This runs all the cells that are above

the selected cell.

Figure 6-17. Cell drop-down menu

Chapter 6 IntroduCtIon to Jupyter notebook

113

 6. Run All Below: This runs all the cells that are below

the selected cell.

 7. Cell Type: This allows us to select the type of cell

you require.

 8. Current Outputs: This gives us the option to either

Toggle, Toggle Scrolling, or Clear the selected

output.

 9. All Output: This gives us the option to either Toggle,

Toggle Scrolling, or Clear all the output in the

notebook.

 The Kernel Drop-Down Menu
Figure 6-18 shows the different options available within the Cell

drop-down menu.

 1. Interrupt: This interrupts the running process as

the code is being executed.

 2. Restart: This restarts the entire kernel, retaining the

previously obtained outputs.

 3. Restart and Clear Output: This restarts the entire

kernel, clearing the previously obtained outputs.

Figure 6-18. Kernel drop-down menu

Chapter 6 IntroduCtIon to Jupyter notebook

114

 4. Restart and Run All: This restarts the entire kernel

and once again proceeds to execute all the cells.

 5. Reconnect: This allows the kernel to reconnect.

 6. Shutdown: This shuts the active kernel down.

 7. Change Kernel: This allows us to change our kernel

to any version or language that we want.

There you have it! This was an overview of some of the most basic but

important features of Jupyter Notebook.

Now that you are familiar with the working environment of Jupyter

Notebook, let’s go ahead and practice some Python programming with the

help of Jupyter Notebook.

 Additional Information
The Jupyter Project is a very interesting initiative, especially for data

scientists and machine learning enthusiasts who need a reliable and

convenient space to work on their projects. Let’s have a look at two more

very useful features that come under Project Jupyter, and that can be useful

to some of us in our machine learning journey.

 JupyterHub
JupyterHub allows multiple users to share resources in order to program.

Each user has their own workspace where they can code without worrying

about installations and maintenance.

Chapter 6 IntroduCtIon to Jupyter notebook

115

It can run either on a user’s system or on the cloud. It is customizable,

flexible, portable, and scalable, making it a great interface for programmers.

It also has its own community for users to discuss and contribute.

 Jupyter nbviewer
Jupyter nbviewer is a free and publicly available instance of nbviewer,

which is a web-based application that allows us to view a notebook as a

static HTML web page. It also provides us with a link that we can use to

share the notebook with others.

Apart from viewing a single notebook, we can also view notebook

collections. These notebooks can even be converted into other formats.

 Voila
Voila is used to convert a Jupyter notebook into a stand-alone web

application that can be shared with others. It consists of an interactive

dashboard that is customizable and allows users to view the notebook in a

secure environment.

It can work in any Jupyter kernel, independent of the type of

programming language used. It is a great choice for non-technical users

who desire to view the results of the notebook without having to see the

code cells or execute the code.

Chapter 6 IntroduCtIon to Jupyter notebook

116

 Google Colaboratory
Google’s Colaboratory or Colab is a free online Jupyter environment.

It runs in the cloud and stores its notebooks to the user’s Google Drive.

As of October 2019, Colab mainly supports Python 2 and Python 3

kernels.

However, it is also possible for Colab to support R, Swift, and Julia.

 Keyboard Shortcuts
First of all, you need to know that there are two modes of working with

Jupyter Notebook, as follows:

• Command Mode, which allows us to navigate around

the notebook with our arrow keys.

• Edit Mode, which allows us to edit the selected cell.

Table 6-1 lists some of the most useful keyboard shortcuts that we can

use while working with Jupyter Notebook.

Chapter 6 IntroduCtIon to Jupyter notebook

117

Table 6-1. Keyboard Shortcuts for Jupyter Notebook

Mac Windows and Linux Action

Cmd + Shift + p Ctrl + Shift + p access keyboard shortcuts

Shift + enter Shift + enter executes the code

esc esc enters Command Mode when in edit

Mode

enter enter enters edit Mode when in Command

Mode

a a Inserts a new cell above the selected

cell while in Command Mode

b b Inserts a new cell below the selected

cell while in Command Mode

d + d (press d

twice)

d + d (press d twice) deletes the selected cell while in

Command Mode

Shift + tab Shift + tab displays the available documentation

for the item entered into the cell

Ctrl + Shift + - Ctrl + Shift + - Splits the selected cell into two at the

point where the cursor rests while in

edit Mode

F F Finds and replaces code while in

Command Mode

Shift + J / Shift +

down

Shift + J / Shift + down Selects the chosen cell as well the

cell below it

Shift + k / Shift

+ up

Shift + k / Shift + up Selects the chosen cell as well as the

one above it

Shift + M Shift + M Merges multiple cells

Chapter 6 IntroduCtIon to Jupyter notebook

118

 Summary
In this chapter, we have gained an understanding of the importance of

the notebook interface, when compared to IDEs and text editors. We

then explored the Jupyter Notebook application, its features, and its user

interface.

The great thing about Jupyter Notebook is that it looks quite complex

and technical, but in reality it is not too difficult to use, once you get

the hang of it. Overall, it is a great tool to use for all your programming

purposes. Not just that, it can also be used to display your results and

present your output in a manner that is not too hard on the eyes.

In the next few chapters, we will begin some actual programming

with the help of Jupyter Notebook. We will get a feel of how we can use

the notebook interface effectively to enter, run, and debug our code. And,

finally, once we have gained some familiarity with Jupyter Notebook, we will

proceed with using the interface to develop our machine learning models.

 Quick Links
Learn more about Project Jupyter: https://

jupyter.org/about

Jupyter Documentation: https://jupyter.org/

documentation

Try Jupyter: https://jupyter.org/try

JupyterHub: https://jupyter.org/hub

Jupyter Notebook Viewer: https://nbviewer.

jupyter.org/

Google Colab: https://colab.research.google.

com/notebooks/intro.ipynb

Chapter 6 IntroduCtIon to Jupyter notebook

https://jupyter.org/about
https://jupyter.org/about
https://jupyter.org/documentation
https://jupyter.org/documentation
https://jupyter.org/try
https://jupyter.org/hub
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb

	Chapter 6: Introduction to Jupyter Notebook
	Understanding the Notebook Interface
	A Brief History of the Notebook
	Features of a Notebook
	Commonly Used Notebooks

	An Overview of Jupyter Notebook
	Features of Jupyter Notebook
	Advantages of Jupyter Notebook

	Text Editors and IDEs
	Getting Acquainted with Text Editors
	Getting Acquainted with the IDE
	Features of an IDE
	Benefits of an IDE
	Some Popular IDEs
	IDE vs. Text Editor
	Jupyter Notebook vs. Other Programming Applications
	Installing Jupyter Notebook

	Launching Jupyter Notebook
	Inside a Jupyter Notebook
	Cell
	Kernel
	The Cell Drop-Down Menu
	The Kernel Drop-Down Menu

	Additional Information
	JupyterHub
	Jupyter nbviewer
	Voila
	Google Colaboratory
	Keyboard Shortcuts

	Summary
	Quick Links

